AANS Neurosurgeon | Volume 28, Number 2, 2019

Advertisement

Blocking Toxic-Protein Production in ALS

Print Friendly, PDF & Email

An approved drug that blocks an integrated stress response shows promise in preliminary tests against ALS and frontotemporal dementia.

Patients with ALS frequently have a string of repeated DNA code in the cells of their brain, carrying hundreds to thousands of copies within the gene C9orf72. New research looks at what triggers these repeated sequences to eventually produce the toxic proteins that are associated with ALS, frontotemporal dementia, and other neurodegenerative diseases in patients carrying the C9orf72 mutation, the most common cause of inherited ALS. The work finds that neuronal excitation and stress trigger the protein production in cells, and reveals that targeting this stress response with a known drug could reduce toxic protein production.

“Understanding what triggers toxic proteins production helped us hone in on drugs that could block them in laboratory tests,” said co-senior author Aaron Haeusler, PhD, Assistant Professor of Neuroscience within the Vickie & Jack Farber Institute for Neuroscience and the Weinberg ALS Center at Jefferson (Philadelphia University + Thomas Jefferson University). 

Click here to read more.

Calendar/Courses

NeuroSafe 2019 Symposium
Aug. 8-9, 2019; Minneapolis

SNSA Congress 2019
Aug. 8-11, 2019; Cape Town, South Africa

2019 Managing Coding and Reimbursement Challenges
Aug. 22-24, 2019; Rosemont, Ill.

Comments are closed.