Imaging Brain Connections can Predict Improvements in Obsessive-compulsive Disorder Patients After Deep Brain Stimulation

0
952

Deep brain stimulation (DBS) is a promising therapy for treatment-resistant obsessive-compulsive disorder (OCD). A first-of-its-kind collaborative study led by researchers at Texas Children’s Hospital, Baylor College of Medicine, and Brigham & Women’s Hospital has found that mapping neural connections in the brains of OCD patients offers key insights that explain the observed improvements in their clinical outcomes after DBS. The study was published in Biological Psychiatry.

Neuropsychiatric disorders such as obsessive-compulsive disorder are a result of dysfunction across broad neural networks and typically involve brain domains responsible for cognitive and higher-order decision-making such as the prefrontal cortex.

o

“The goal of neuromodulatory therapies like DBS is to restore the functional balance within these networks. Since the extent of functional dysfunction in these networks varies between individuals, it is important to customize DBS surgery for each patient. To do that reliably, we first need to precisely map the neural connections involved in the specific condition and then understand how these connections are affected by DBS,” said co-corresponding author Dr. Sameer Sheth, professor in the department of neurosurgery at Baylor College of Medicine, director of the Cain Foundation Labs, and principal investigator at the Jan and Dan Duncan Neurological Research Institute (Duncan NRI) at Texas Children’s Hospital.

Read More

Print Friendly, PDF & Email
o