AANS Neurosurgeon | Volume 29, Number 2, 2020


Why Do Some Head Knocks Cause More Damage Than Others?

Print Friendly, PDF & Email

As researchers piece together puzzling patterns of brain damage after concussions, UNC researchers found that damaging shock waves intensified deep inside the brain after head impacts.


Veteran sailors know that rogue waves can rise suddenly in mid-ocean to capsize even the largest vessels. Now it appears that a similar phenomenon called shear shock wave occurs in the concussed brain. It may help explain why some head knocks cause so much more harm than others.

“We’ve observed for the first time this particular wave phenomenon in the brain, and we think it could be a primary mechanism of neural injury in many types of head trauma,” says Gianmarco Pinton, PhD, an assistant professor in the Joint UNC-NC State Department of Biomedical Engineering. Pinton, research assistant professor David Espindola, PhD, and research technician Stephen Lee described their observations.

For several years, Pinton has been trying to develop better ultrasound imaging techniques for tracking shear waves in living tissue. He’s been focused on the study of impact-induced shear waves, which jostle tissue with relatively slow, side-to-side forces, in contrast to the better-studied compression waves that travel in the direction of impact at the speed of sound.

Click here to read more.


No upcoming events

Comments are closed.