AANS Neurosurgeon | Volume 26, Number 1, 2017

Advertisement

Study Reveals Brain Circuits that Shape Sensory Perceptions

Bookmark and Share

In a study recently published in the journal Nature Neuroscience, researchers from John Hopkins University School of Medicine identified brain processes in mice that may help explain why humans experience ambiguous sensory inputs. “In everyday life, we experience weak stimuli all the time,” said the study’s lead researcher. “Did I hear my name being called? Do you smell smoke? Is that an oasis up ahead or a mirage? When the brain receives weak information through the senses, it can interpret that information in multiple ways, and we wanted to understand what determines the resulting perception.” Using high-resolution microscopy with an engineered protein that fluoresces when a nerve cell is active, the research team monitored the activity of hundreds of neurons in the part of the brain responsible for feeling touch (in mice) and found a relationship between two signaling patterns in the cerebral cortex, adding cellular details to the understanding from psychology that what we perceive is not a fixed thing based only on sensory input, but is also influenced by our prior experiences and the current state of our brains. To read more about this study, click here.

Calendar/Courses

Microsurgery Course Zurich
March 29-April 1, 2017; Zurich, Switzerland

12th World Congress on Brain Injury
March 29-April 1, 2017; New Orleans

2017 National Neuroscience Review
March 31-April 1, 2017; National Harbor, Md.

Brain & Brain PET 2017
April 1-4, 2017; Berlin, Germany

Neurosurgical Society of America Annual Meeting 2017
April 2-5, 2017; Jacksonville, Fla.

Interactive Calendar

Comments are closed.