AANS Neurosurgeon | Volume 26, Number 1, 2017

Advertisement

Yale Scientists Identify Key Defect in Brain Tumor Cells

Bookmark and Share

In a new study, Yale Cancer Center researchers identified a novel genetic defect that prevents brain tumor cells from repairing damaged DNA. They found that the defect is highly sensitive to an existing FDA-approved drug used to treat ovarian cancer — a discovery that challenges current practice for treatment of brain tumors and other cancers with the same genetic defect, said the scientists. Certain malignant brain tumors and leukemias have mutations in genes known as IDH1 and IDH2. The mutations render the cancers sensitive to treatment with radiation therapy or chemotherapy, significantly increasing the survival time for patients with the mutations. To better understand this sensitivity, a cross-disciplinary team of researchers led by Yale created models of the mutation in cell cultures. The researchers tested several existing cancer drugs on the mutated cell lines. They found that tumor cells with the mutant genes were particularly sensitive to a drug, olaparib, recently approved for the treatment of hereditary ovarian cancer. The drug caused a 50-fold increase in brain tumor cell death.

Click here to read more.

Calendar/Courses

Microsurgery Course Zurich
March 29-April 1, 2017; Zurich, Switzerland

12th World Congress on Brain Injury
March 29-April 1, 2017; New Orleans

2017 National Neuroscience Review
March 31-April 1, 2017; National Harbor, Md.

Brain & Brain PET 2017
April 1-4, 2017; Berlin, Germany

Neurosurgical Society of America Annual Meeting 2017
April 2-5, 2017; Jacksonville, Fla.

Interactive Calendar

Leave a Reply

Be the first to reply using the above form.