AANS Neurosurgeon | Volume 26, Number 4, 2017


New Computational Strategy Finds Brain Tumor-shrinking Molecules

Researchers from the University of California, San Diego, recently developed a new computational strategy to search for molecules that could be developed into treatments for glioblastoma. The mouse-model study, published in the journal Oncotarget, found that one molecule shrank the average tumor size by half. The newly discovered molecule works against glioblastoma tumors by wedging itself in the temporary interface between two proteins whose binding is essential for the tumor’s survival and growth. This study is the first to demonstrate successful inhibition of this type of protein, known as a transcription factor. “Most drugs target stable pockets within proteins, so when we started out, people thought it would be impossible to inhibit the transient interface between two transcription factors,” said first author of the study. “But we addressed this challenge and created a new strategy for drug design — one that we expect many other researchers will immediately begin implementing in the development of drugs that target similar proteins, for the treatment of a variety of diseases.” To read more about this study, click here.


Winter Clinics for Cranial and Spinal Surgery
Feb. 25, 2018 - Mar. 1, 2018; Snowmass Village, Colo.

69th Southern Neurosurgical Society Annual Meeting
Feb. 28, 2018 - Mar. 3, 2018; San Juan, PR

Second International Brain Mapping Course
April 26-27, 2018; New Orleans

Comments are closed.