AANS Neurosurgeon | Volume 26, Number 1, 2017

Advertisement

Brain-machine Interfaces: Bidirectional Communication at Last

Bookmark and Share

Since the early seventies, scientists have been developing brain-machine interfaces; the main application being the use of neural prosthesis in paralyzed patients or amputees. A prosthetic limb directly controlled by brain activity can partially recover the lost motor function. This is achieved by decoding neuronal activity recorded with electrodes and translating it into robotic movements. Such systems however have limited precision due to the absence of sensory feedback from the artificial limb. Neuroscientists at the University of Geneva (UNIGE), Switzerland, asked whether it was possible to transmit this missing sensation back to the brain by stimulating neural activity in the cortex. They discovered that not only was it possible to create an artificial sensation of neuroprosthetic movements, but that the underlying learning process occurs very rapidly. These findings were obtained by resorting to modern imaging and optical stimulation tools, offering an innovative alternative to the classical electrode approach.

Click here to read more.

Calendar/Courses

No upcoming events

Leave a Reply

Be the first to reply using the above form.